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MODELLING OF TWO-DIMENSIONAL LAMINAR FLOW
USING FINITE ELEMENT METHOD
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SUMMARY

In this paper, a Galerkin weighted residual finite element numerical solution method, with velocity
material time derivative discretisation, is applied to solve for a classical fluid mechanics system of partial
differential equations modelling two-dimensional stationary incompressible Newtonian fluid flow. Classi-
cal examples of driven cavity laminar flow and laminar flow past a cylinder are presented. Numerical
results are compared with data found in the literature. Copyright © 1999 John Wiley & Sons, Ltd.

KEY WORDS: two-dimensional laminar fluid flow; Newtonian incompressible fluid; finite element method; discretisa-
tion of velocity material time derivative

1. INTRODUCTION

A great part of Earth’s interior and its surface is comprised of fluids. An even further look into
space shows that stars, interstellar gases, nebulas and galaxies are made mainly of fluids. Many
technical devices, technological processes, and generally a great part of human activity, are
related to fluids [1].

The theoretical basis of classical fluid mechanics has been defined already at the beginning
of the nineteenth century. Even though the fluid was then defined as a continuum, conforming
the natural science paradigm of that time, the same theory is in use today describing fluid flow
phenomena well enough for present problems in science and technology. According to
Feynman’s theory of classification [2], the theory of classical fluid mechanics would be rather
of phenomenological than of fundamental type. Mathematical principles of classical fluid
mechanics can be found in a book by Serin [3].

This paper uses a classical fluid mechanics system of partial differential equations modelling
two-dimensional stationary incompressible flow of a Newtonian fluid, which are two two-
dimensional stationary incompressible Newtonian fluid flow Navier–Stokes equations and one
two-dimensional incompressible continuity equation.

The aim of this paper is to present a numerical solution method for solving partial
differential equations modelling the two-dimensional stationary incompressible flow of a
Newtonian fluid. Because of the non-linear term in advective acceleration, many schemes were
proposed, from local linearization to up-winding techniques [4]. The scheme used in this paper
is based on the Galerkin weighted residual method combined with the discretisation of a
velocity material time derivative [4–6]. The domain is discretised using two-dimensional
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quadrilateral parabolic finite elements. Velocity components are approximated on isoparamet-
ric and pressure on superparametric finite elements to avoid pressure solution oscillations [5].
Streamlines are determined using a streamfunction [7].

The numerical method is implemented using an ASCII file in–out computer program
written in widely portable K&R C computer programming language [8]. Input data prepara-
tion and output data presentation have been handled using I-DEAS finite element modelling
computer program [9].

2. MATHEMATICAL MODEL

2.1. Mathematical model consistency

In order to get a feel about the consistency of the classical fluid mechanics theory used in
this paper, the following quotation is included:

‘Our goal is to outline one specific challenge that faces the next generation of applied mathemati-
cians and mathematical physicists. The problem, which we believe is not widely appreciated in these
communities is that it is not all certain whether one of the fundamental models of classical
mechanics, of wide utility in engineering applications, is actually self-consistent.

The suspect model is embodied in the Navier–Stokes equations of incompressible fluid dynamics.
These equations are nothing more than a continuum formulation of Newton’s laws of motion for
material ‘‘trying to get out of its own way’’. They are a set of non-linear partial differential
equations that are thought to describe fluid motion for gases and liquids, from laminar to turbulent
flows, on scales ranging from below a millimetre to astronomical lengths. Only for the simplest
examples are they soluble, tough, usually corresponding to laminar flows. In many important
applications, including turbulence, they must be modified and matched, truncated and closed, or
otherwise approximated analytically or numerically in order to extract any predictions. On its own
this is not a fundamental barrier, for a good approximation can sometimes be of equal or greater
utility than a complicated exact result.

The issue is that is has never been shown that the Navier–Stokes equations in three spatial
dimensions, posses smooth solutions starting from arbitrary initial conditions, even very smooth,
physically reasonable, initial conditions. It is possible that the equations produce solutions that
exhibit finite time singularities. If this occurs, then subsequent evolution may be non-unique,
violating the fundamental tenets of Newtonian determinism for this model. Furthermore, finite time
singularities in the solutions signal that the equations are generating structures on arbitrarily small
scales, contradicting the separation-of-scales assumption used to derive the hydrodynamic equations
from microscopic models. It turns out that the non-linear terms that can not be controlled
mathematically are precisely those describing what is presumed to be the basic physical mechanism
for the generation of turbulence, namely vortex stretching. So what may appear to the applied
scientist to be mathematical formalities, i.e. questions of existence and uniqueness and regularity,
are actually intimately tied up with the efficacy of the Navier–Stokes equations as a model for fluid
turbulence. Whether or not the equations actually do display these pathologies remains an open
problem. It has never been proved one way or the other.’ [10]

2.2. Na6ier–Stokes equations and continuity equation

A system of partial differential equations modelling the stationary incompressible flow of a
Newtonian fluid in a two-dimensional spatial domain D, using Descartes rectangular spatial
co-ordinates x and y, are

u
(u
(x

+6
(u
(y

= −
1
r

(p
(x

+n
�(2u
(x2+

(2u
(y2

�
+ fx, Ö(x, y)�D,
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where u and 6 are velocity components, p is pressure, fx and fy are body force components,
r=constant is fluid density and n=constant is kinematic viscosity [5]. The first and last
equation in (1) are two-dimensional stationary incompressible Newtonian fluid flow Navier–
Stokes equations and the second equation in (1) is a two-dimensional incompressible continu-
ity equation.

System (1) is not completely posed until appropriate boundary conditions are specified.
Boundary conditions are necessary for both u and 6 in (1) and they are determined by the
physics of the problem [10].

A wide range of two-dimensional stationary incompressible flows of Newtonian fluid can be
covered using essential, or Dirichlet’s, and natural, or Neumann’s, boundary conditions [5].

u �Sdu=u0,
6 �Sd6=60,

grad u �Snu ·n
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where S=(D is a two-dimensional spatial domain boundary, Sdu¦S is a part of boundary S
where the function u is known, Sd6¦S is a part of boundary S where the function 6 is known,
Snu¦S is a part of boundary S where the function (u/(n is known, Sn6¦S is a part of
boundary S where the function (6/(n is known [5].

System (1), together with boundary conditions (2), uniquely determines pressure up to an
additive constant. Therefore, for unique pressure determination, the following condition has to
be used [5]:

p(x0, y0)=p0, (3)

where (x0, y0)�D is a point in D where p is known.
Knowing parameters fx, fy, r and n, together with boundary conditions (2) and condition

(3), the solution u(x, y), 6(x, y) and p(x, y) can be obtained in D( .

2.3. Vorticity, enstrophy, streamfunction and streamlines

A two-dimensional fluid flow vorticity is defined as [7]

v=
(6

(x
−
(u
(y

, Ö(x, y)�D. (4)

A global measure of fluid flow vorticity is enstrophy, defined as&
D

v2 dA, (5)

where v is the two-dimensional fluid flow vorticity.
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In the absence of moving boundaries, the incompressible Newtonian fluid flow rate of
energy dissipation by viscosity is directly proportional to the enstrophy [10], i.e. it is equal to

nr
&

D

v2 dA.

The two-dimensional fluid flow streamfunction, c, is defined as [7]

u=
(c

(y
, 6= −

(c

(x
, Ö(x, y)�D. (6)

From (4) and (6) it follows that

(2c

(x2 +
(2c

(y2 = −v, Ö(x, y)�D. (7)

From Poisson partial differential equation (7), knowing velocity components u and 6 together
with appropriate Dirichlet boundary conditions for streamfunction c, the streamfunction
c(x, y) can be obtained in D( .

Two-dimensional stationary fluid flow streamlines are defined as sets [5]

{(x, y)�D( : c(x, y)=constant},

with the constant parameter defining a single streamline.

2.4. Dimensionless parameters

After defining dimensionless length, time, velocity, pressure and body force variables
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where L is reference length and U is reference velocity intensity, the partial differential
equations in (1) become
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where

Re=
UL
n

is the Reynolds number and D* is the dimensionless two-dimensional spatial domain [10].

‘The Reynolds number is a measure of the ratio of the imposed velocity scale U to the ‘‘viscous’’
scale determined by the system size L and the momentum diffusion time L2/n. Alternatively, it may
be thought of as a ratio of the driving from the boundary to the damping from the coefficient of
viscosity. Low Reynolds numbers mean strong momentum diffusion—alternatively, week driving or
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strong damping—suggesting dynamically constrained flows. High Reynolds numbers correspond to
relatively strongly driven, underdumped systems. Indeed, the singular limit Re�� transforms the
Navier–Stokes equations into the conservative Euler equations. Solutions of the Navier–Stokes
equations at high Reynolds numbers may appear, locally, similar to inviscid flows solving Euler
equations. The boundary conditions for the Navier–Stokes equations are fundamentally different
from those for Euler equations, however, and viscous boundary layers are found near rigid walls.
This effect of viscosity is a fundamental source of the difference between solutions of the high
Reynolds number Navier–Stokes equations and Euler equations.’ [10]

3. NUMERICAL METHOD

3.1. Discretisation of material time deri6ati6e

Material time derivative of quantity f in the two-dimensional spatial domain D, using
Descartes rectangular spatial co-ordinates x and y is defined as

df
dt

=u
(f
(x

+6
(f
(y

, Ö(x, y)�D, (8)

where u and 6 are velocity components.
The material time derivative of quantity f in (8) can be approximated with

df(x, y)
dt

#
f(x, y)− f(x̃, ỹ)

Dt
, (9)

where x̃8(X, Y, t−Dt) and ỹx(X, Y, t−Dt) are position co-ordinates of a fluid parti-
cle—defined for a particle whose position co-ordinates in time instance t are x̃8(X, Y, t)
and ỹx(X, Y, t)—in time instance t−Dt [6], and Dt finite ‘small’ time interval.

Co-ordinates x̃ and ỹ can be approximated with [6]

x̃#x−u(x, y)Dt, ỹ#y−6(x, y)Dt. (10)

Using (9) to approximate the velocity material time derivative, the partial differential
equations (1) can be transformed to
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where ũu(x̃, ỹ) and 6̃6(x̃, ỹ).

3.2. The Galerkin weighted residual method

The Galerkin weighted residual method is a numerical technique that can be used to solve
a single or a set of partial differential equations. Methods of weighted residuals have been used
quite extensively in the field of fluid mechanics [5].

The key idea of the weighted residual method is the approximation of differential equations
solution, i.e. unknown functions, with a finite sum of linearly independent functions. After-
wards, the residual functions are defined and their minimum is searched. As a result, a finite
set of constants, approximating differential equations solution, can be calculated.
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To apply the Galerkin weighted residual method to (11) and (1), the two-dimensional spatial
domain D( =D@S has to be approximated with a finite number ne of non-empty closed sets D( e

so that [5]

.
e

D( e=D( %#D( , e=1, 2, . . . , ne,

D( iSD( j=SiSS j, i" j, 15 i, j5ne,

where Si and S j are boundaries of D( i and D( j, S is a boundary of D( and D( % is an
approximation of the set D( . The boundary Se of set D( e is comprised of sides, i.e. of sets whose
union is equal to Se and whose intersection is a point in Se or an empty set. Neighbourhood
sides of set D( e are those sides whose intersection is a point in Se.

On D( e sides, specific points, called nodes, are chosen. Each side has an equal number of
nodes. Nodes are chosen so that intersection of two neighbourhood sides of set D( e is the node
called the corner node [5]. Sets D( e are arranged so that intersection D( iSD( j=SiSS j, i" j, can
be the only common side of sets D( i and D( j, common corner node of sets D( i and D( j, or empty
set. Nodes on a non-empty intersection D( iSD( j=SiSS j, i" j, are common nodes of sets D( i

and D( j. The sets D( e are called finite elements.
The set of boundary finite elements bD( % is defined as

bD( %={D( i¦D( %: SiSS %"0},

where Si is a boundary of D( i, S % boundary of D( % and SiSS %"0 one or more sides of set D( i.
Two-dimensional quadrilateral parabolic finite elements are used in this paper.
Two-dimensional quadrilateral parabolic finite element D( e, using Descartes rectangular

spatial co-ordinates x and y, is defined as [5]
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where xi
e and yi

e are node co-ordinates and Ni(j, h) are shape functions [5],
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where j1=j7=j8=h1=h2=h3= −1, j2=j6=h4=h8=0, j3=j4=j5=h5=h6=h7=1,
and j, h� [−1, 1].

Let f be a scalar quantity defined in D( e.
If D( e is defined with (12), in the case of isoparametric finite elements, the quantity f in D( e

is approximated with

f= %
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where f i
e are nodal values of f and Ni(j, h) are shape functions defined in (13).

If D( e is defined with (12), in the case of superparametric finite elements, the quantity f in D( e

is approximated with
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where f2(i−1)+1
e are values of f in corner nodes and Mi(j, h) are shape functions [5]

Mi= (1+j2(i−1)+1j)(1+h2(i−1)+1h)/4, i=1, 2, . . . , 4, (14)

where j1=j7=h1=h3= = −1, j3=j5=h5=h7=1, and j, h� [−1, 1].
After having approximated the set D( with set D( %, boundary conditions (2) and condition (3)

are slightly changed.
Boundary conditions (2) become
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(15)

where S %du¦S % is a part of boundary S % where the value of function u is known, S %d6¦S % is a
part of boundary S % where the value of function 6 is known, S %nu¦S % is a part of boundary S %
where the value of function (u/(n is known and S %n6¦S % is a part of boundary S % where the
value of function (6/(n is known. Functions u0, 60, ((u/(n)0 and ((6/(n)0 are defined by their
nodal values on boundary S %.

Condition (3) becomes

p(x0, y0)=p0, (16)

where (x0, y0)�D % is node in D %=D( %¯S % where the value of function p is known.
In this paper, functions u(x, y) and 6(x, y) in (11) and (1) are approximated using

two-dimensional quadrilateral parabolic isoparametric finite elements and function p(x, y) in
(11) and (1) is approximated using two-dimensional quadrilateral parabolic superparametric
finite elements to avoid pressure solution oscillations [5].

As a result, a set of non-linear algebraic equations is obtained for (11)

Ae=b, (17)

i.e.

A(A ee e)=A(b e),
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where

N0 j(x, y)#Nj(x−u(x, y)Dt, y−6(x, y)Dt).

A is matrix and vector assembly operator, a� [0, 1) is a numerical method coefficient proposed
by Utnes [6].

Algebraic equation system (17) is non-linear, even if coefficient a=0, since nodal values of
functions u and 6 are used in the calculation of N0 j.

A similar non-linear algebraic equation system is obtained for (1) [5]

Ae=b. (18)

The difference between non-linear algebraic equation systems (17) and (18) is in matrix C11
e ,

which for the method proposed by Taylor and Hughes [5], is
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i, j=1, . . . , 8.

To introduce Dirichlet’s boundary conditions in (15) and condition (16), non-linear algebraic
equation systems (17) and (18) have to be modified as described by Tailor and Hughes [5].
Neumann’s boundary conditions in (15) are introduced via l e vectors.

Solving (17), modified by boundary conditions introduction, one obtains nodal values of
functions u(x, y), p(x, y) and 6(x, y) approximating the solution of (11).

Solving (18), modified by boundary conditions introduction, one obtains nodal values of
functions u(x, y), p(x, y) and 6(x, y) approximating the solution of (1).

3.3. Iterati6e procedure

The iterative procedure used in this paper consists of two stages: the first stage (I) where
Equations (11) are solved, and the second stage (II) where Equations (1) are solved. The
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numerical scheme used in the first stage is a relatively fast convergent scheme, but not as
accurate as the numerical scheme used in the second stage. The numerical scheme used in the
second stage does not introduce the velocity material time derivative discretisation error
present in the first stage, but since it is a slower convergent scheme, it is desirable that it be
used together with the numerical scheme used in the first stage.

Solutions of the non-linear algebraic equation systems (17) and (18) are obtained in an
iterative procedure. Nodal values of functions u, p and 6 are assumed to be known in matrix
A and vector b so that the systems (17) and (18) can be treated as systems of linear algebraic

Figure 1. Driven cavity laminar flow.

Figure 2. Spatial domain geometry (dclf).

Figure 3. Boundary conditions (dclf).
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Figure 4. Spatial domain discretisation (dclf).

Table I. Convergence of iterative procedure (dclf-400-1)

(D6ri)max Stage(Duri)max (Dprj)maxIteration

I3.414 · 10+31.449 · 10+21.000 · 10+41
2 9.583 · 10−3 4.225 · 10+0 I9.704 · 10−2

3 5.970 · 10−4 6.080 · 10−3 I3.599 · 10−5

4 2.658 · 10−7 4.178 · 10−5 2.345 · 10−6 I
II2.294 · 10−61 3.109 · 10−59.696 · 10−7

equations and as such, solved [11]. The solution of the linear algebraic equation system is then
used as new known values of functions u, p and 6 in matrix A and vector b to form a new
linear algebraic equation system, which is solved again. The iterative procedure continues until
solutions in two consecutive iterations are close enough.

In this paper, the iterative procedure solution is assumed to be reached for given tolerance
e in the kth iteration if

Duri
kBe,

Dprj
kBe,

D6 ri
kBe,

Öi=1, 2, . . . ,
Öj=1, 2, . . . ,
Öi=1, 2, . . . ,

where
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Figure 5. Nodal velocities (dclf-400-1).
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Figure 6. Pressure contours (dclf-400-1).

where p0]0 Pa is a reference pressure, p1=1 Pa is substitution for the reference pressure if
p0=0 Pa, d=0.0001 is the minimal velocity intensity ratio and pressure ratio, �7 i

k−1� are
velocity intensities at nodes and �7r0� is reference velocity intensity.

The primary sources of error associated with the application of the finite element method are
[5]:

� numerical round-off resulting from the necessary numerical manipulations within a
computer,

� the tolerance set for the termination of iterative procedure,
� discretisation errors arising from the finite element approximation.

4. NUMERICAL EXAMPLES

In this paper a classical example of driven cavity laminar flow and laminar flow past a cylinder
are presented.
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4.1. Dri6en ca6ity laminar flow (dclf)

A Newtonian incompressible fluid is placed in a rectangular spatial domain, as shown in
Figure 1. Three sides are rigid and the fourth one is moving with constant velocity 7r0. If b�a,
a fluid flow is approximately two-dimensional.

In a two-dimensional model, the spatial domain is a square, shown in Figure 2. Geometry
is defined with points: P1 (x1, y1), P2 (x2, y2), P3 (x3, y3) and P4 (x4, y4), where x1=
x4= −1 m, x2=x3=1 m, y1=y2= −1 m and y3=y4=1 m. Co-ordinates of point P0
(x0, y0) are: x0= −0.9 m and y0= −0.9 m.

Figure 7. Streamlines (dclf-400-1).

Figure 8. Velocity profiles (dclf-400-1).
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Table II. Comparison of some calculated data against the literature (dclf-400-
1)

Vertex centre u(0, y)min 6(x, 0)minSource 6(x, 0)
(xc, yc) m m s−1 m s−1 m s−1

(0.004, 0.515) −0.195 −0.178Author 0.177
[16] (0.000, 0.500) −0.199 −0.177 0.177

(0.000, 0.500) — —[17] —
(0.000, 0.533) —[18] — —
(0.000, 0.540) −0.188[13] −0.175 0.175

Table III. Convergence of iterative procedure (dclf-400-400)

(Duri)max (Dprj)maxIteration (D6ri)max Stage

1.000 · 10+4 3.622 · 10−1 3.414 · 10+31 I
2 1.282 · 10+1 3.589 · 10−1 6.777 · 10+0 I

5.772 · 10+0 1.278 · 10−13 8.758 · 10+0 I
5.301 · 10−1 4.605 · 10−24 5.472 · 10−1 I
2.647 · 10−1 9.472 · 10−3 2.741 · 10−15 I
5.528 · 10−2 2.176 · 10−36 8.168 · 10−2 I

7 2.027 · 10−2 1.391 · 10−3 2.638 · 10−2 I
4.971 · 10−3 3.474 · 10−48 3.568 · 10−3 I

9 3.698 · 10−3 9.255 · 10−5 3.086 · 10−3 I
10 1.809 · 10−3 6.159 · 10−5 1.073 · 10−3 I

7.715 · 10−4 1.812 · 10−511 4.953 · 10−4 I
8.709 · 10−4 2.103 · 10−51 3.770 · 10−4 II

Boundary conditions are shown in Figure 3. The pressure value is prescribed at point P0.
The numerical calculation is performed on discretised spatial domain D( % comprising of

ne=400 two-dimensional quadrilateral parabolic finite elements, as shown in Figure 4.
Functions u(x, y) and 6(x, y) are discretised in n6=1281 nodes and function p(x, y) in
np=441 nodes.

The Reynolds number for driven cavity two-dimensional flow is

Re=
a �7r0�

n
.

4.1.1. Dri6en ca6ity laminar flow (dclf-400-1). For this particular example, the following data
values are chosen: fluid density r=1 kg m−3, kinematic viscosity n=2 m2 s−1, body force
components fx= fy=0 N kg−1, tolerance e=0.001, time interval Dt=0.00007 s, numerical
scheme coefficient a=0, initial nodal values of functions u, p and 6 : ui

0=0 m s−1, pj
0=1 Pa,

6 i
0=0 m s−1, i=1, 2, . . . , n6, j=1, 2, . . . , np, reference velocity intensity �7r0�=1 m s−1 and

reference pressure, defined at point P0�D %, p0=1 Pa.
Convergence of iterative procedure is shown in Table I.
Calculated fluid flow rate of energy dissipation by viscosity is

nr
&

D%

v2 dA=2.5955·10+1 W m−1.
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The result of the calculation is presented in Figures 5–7. Pressure in Figure 6 is given in
Pascals.

A comparison of some calculated data against literature values is given in Figure 8 [12,13]
and Table II.

4.1.2. Dri6en ca6ity laminar flow (dclf-400-400). For this particular example, the following
data values are chosen: fluid density r=1 kg m−3, kinematic viscosity n=0.005 m2 s−1, body
force components fx= fy=0 N kg−1, tolerance e=0.001, time interval Dt=0.00007 s, numer-
ical scheme coefficient a=0, initial nodal values of functions u, p and 6 : ui

0=0 m s−1, pj
0=1

Pa, 6 i
0=0 m s−1, i=1, 2, . . . , n6, j=1, 2, . . . , np, reference velocity intensity �7r0�=1 m s−1

and reference pressure, defined in point P0�D %, p0=1 Pa.
Convergence of the iterative procedure is shown in Table III.
Calculated fluid flow rate of energy dissipation by viscosity is

nr
&

D%

v2 dA=8.8787·10−2 W m−1.

The result of calculation is presented in Figures 9–11. Pressure in Figure 10 is given in
Pascals.

A comparison of some calculated data against literature values is given in Figure 12 [12,13]
and Table IV.

Figure 9. Nodal velocities (dclf-400-400).
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Figure 10. Pressure contours (dclf-400-400).

4.2. Laminar flow past a cylinder (lfpc)

The cylinder of diameter d and breath b is moving in a Newtonian incompressible fluid with
constant velocity 7r0, as shown in Figure 13.

The co-ordinate system is taken to be fixed on a cylinder. If b�d a fluid flow is
approximately two-dimensional.

In the two-dimensional model, the spatial domain is a quasi-quadrangle, shown in Figure
14. Since fluid flow is symmetric, just half of the two-dimensional domain is considered [5].
Geometry is defined with points: P1 (x1, y1), P2 (x2, y2), P3 (x3, y3), P4 (x4, y4), P5
(x5, y5) and P6 (x6, y6), where x1=x6= −10 m, x2= −1 m, x3=1 m, x4=x5=20 m,
y1=y2=y3=y4=0 m, y5=y6=20 m. Co-ordinates of point P0 (x0, y0) are: x0=16.539 m,
y0=16.612 m.

Boundary conditions are shown in Figure 15. The pressure value is prescribed at point P0.
The numerical calculation is performed on discretised spatial domain D( % comprising of

ne=290 two-dimensional quadrilateral parabolic finite elements, as shown in Figure 16.
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Functions u(x, y) and 6(x, y) are discretised in n6=929 nodes and function p(x, y) in np=320
nodes.

The Reynolds number for two-dimensional laminar flow past a cylinder is

Re=
d �7r0�

n
.

Figure 11. Streamlines (dclf-400-400).

Figure 12. Velocity profiles (dclf-400-400).
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Table IV. Comparison of some calculated data against the literature (dclf-400-
400)

Vertex centre u(0, y)min 6(x, 0)minSource 6(x, 0)max

(xc, yc) m m s−1 m s−1 m s−1

(0.128, 0.211) −0.279 −0.390Author 0.253
(0.100, 0.200) −0.285 −0.390[16] 0.250
(0.120, 0.220) −0.285[12] — —

[19] (0.109, 0.208) — — —
(0.114, 0.214) —[18] — —
(0.120, 0.240) −0.300 −0.450[13] 0.293

Figure 13. Laminar flow past a cylinder.

Figure 14. Spatial domain geometry (lfpc).

‘At low values of Reynolds number ReB0.5, the inertia forces are negligible and the streamlines
converge downstream of the cylinder in a symmetric pattern. If the Reynolds number is in the range
2BReB30, the boundary layer separates symmetrically and forms two counter-rotating eddies
downstream of the cylinder. With increasing Reynolds number, 40BReB70, the eddies elongate
and oscillate laterally. At a certain boundary value Re#90 for a cylinder placed in a free stream,
the eddies break from alternate sides of the cylinder and are transported downstream. In a certain
range of Re above the limiting value, eddies are continuously shed and form two rows of vortices.
The resulting vortex street or vortex trail degenerates at high values of Reynolds number into a
random turbulence downstream of the cylinder.’ [5]

The following fluid flow types are recognized: stationary, periodic, quasi-periodic and chaotic
fluid flow [14,15].
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4.2.1. Laminar flow past a cylinder (lfpc-290-1). For this particular example the following
data values are chosen: fluid density r=1 kg m−3, kinematic viscosity n=2 m2 s−1, body
force components fx= fy=0 N kg−1, tolerance e=0.001, time interval Dt=0.00011 s, numer-
ical scheme coefficient a=0, initial nodal values of functions u, p and 6 : ui

0=1 m s−1, pj
0=1

Figure 15. Boundary conditions (lfpc).

Figure 16. Spatial domain discretisation (lfpc).

Table V. Convergence of iterative procedure (lfpc-290-1)

Stage(Duri)max (Dpji)max (D6ri)maxIteration

3.430 · 10−1 I3.856 · 10+01.000 · 10+01
2 3.055 · 10−1 2.580 · 10+0 2.247 · 10−1 I
3 5.186 · 10−3 1.222 · 10−1 4.293 · 10−3 I

1.763 · 10−4 I1.236 · 10−24 2.656 · 10−4

5 1.821 · 10−5 3.632 · 10−4 3.107 · 10−5 I
II3.003 · 10−31 8.593 · 10−2 2.064 · 10−3

2 4.180 · 10−5 5.842 · 10−3 1.973 · 10−5 II
II1.883 · 10−61.646 · 10−42.421 · 10−63
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Figure 17. Nodal velocities (lfpc-290-1).

Pa, 6 i
0=0 m s−1, i=1, 2, . . . , n6, j=1, 2, . . . , np, reference velocity intensity �7r0�=1 m s−1

and reference pressure, defined at point P0�D %, p0=1 Pa.
Convergence of the iterative procedure is shown in Table V.
The calculated fluid flow rate of energy dissipation by viscosity is

nr
&

D%

v2 dA=7.5636·10+0 W m−1.

The result of the calculation is presented in Figures 17–19. Pressure in Figure 18 is given in
Pascals.

4.2.2. Laminar flow past a cylinder (lfpc-290-20). For this particular example, the following
data values are chosen: fluid density r=1 kg m−3, kinematic viscosity n=0.1 m2 s−1, body
force components fx= fy=0 N kg−1, tolerance e=0.001, time interval Dt=0.00011 s, numer-
ical scheme coefficient a=0, initial nodal values of functions u, p and 6 : ui

0=1 m s−1, pj
0=1

Pa, 6 i
0=0 m s−1, i=1, 2, . . . , n6, j=1, 2, . . . , np, reference velocity intensity �7r0�=1 m s−1

and reference pressure, defined at point P0�D %, p0=1 Pa.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 601–626 (1999)



R. JURJEVIĆ622

Convergence of the iterative procedure is shown in Table VI.
The calculated fluid flow rate of energy dissipation by viscosity is

nr
&

D%

v2 dA=1.0458·10+0 W m−1.

Figure 18. Pressure contours (lfpc-290-1).
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Figure 19. Streamlines (lfpc-290-1).

Table VI. Convergence of iterative procedure (lfpc-290-20)

(Duri)max (Dpji)max (D6ri)maxIteration Stage

1.016 · 10+0 1.325 · 10+0 5.827 · 10−11 I
2 2.626 · 10+1 2.335 · 10−1 1.536 · 10+0 I

4.367 · 10+0 1.377 · 10−13 3.526 · 10−1 I
2.747 · 10−1 8.775 · 10−34 5.349 · 10−2 I

5 4.446 · 10−2 1.684 · 10−3 2.442 · 10−2 I
5.192 · 10−2 6.918 · 10−4 1.322 · 10−26 I
1.350 · 10−2 2.648 · 10−47 2.468 · 10−3 I

8 3.945 · 10−3 4.146 · 10−5 6.390 · 10−4 I
9 1.406 · 10−4 1.891 · 10−5 3.219 · 10−5 I

1.802 · 10+0 2.460 · 10−21 3.752 · 10−1 II
2 5.011 · 10−1 1.481 · 10−2 8.917 · 10−2 II

4.547 · 10−1 5.465 · 10−4 3.233 · 10−23 II
1.312 · 10−1 1.463 · 10−44 3.797 · 10−3 II

5 3.606 · 10−2 5.155 · 10−5 3.738 · 10−4 II
6 3.038 · 10−3 1.239 · 10−5 1.886 · 10−4 II

3.394 · 10−3 3.141 · 10−67 9.817 · 10−5 II
8 9.085 · 10−4 6.381 · 10−7 2.035 · 10−5 II

The result of the calculation is presented in Figures 20–22. Pressure in Figure 21 is given in
Pascals.

For this particular example, the numerical calculation is also performed using ne=363
two-dimensional quadrilateral parabolic finite elements, with n6=1154 and np=396 and using
ne=453 two-dimensional quadrilateral parabolic finite elements, with n6=1444 and np=496.

The calculated fluid flow rates of energy dissipation by viscosity are

nr
&

D%

v2 dA=1.0459·10+0 W m−1.

and
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nr
&

D%

v2 dA=1.0453·10+0 W m−1.

respectively.

5. CONCLUSIONS

A Galerkin weighted residual finite element numerical solution method for solving classical
fluid mechanics partial differential equations modelling two-dimensional stationary incom-
pressible Newtonian fluid flow can be combined with the similar method using discretisation
of velocity material time derivative in order to achieve faster convergence and retain acceptable
solution accuracy.

A satisfactory fast convergence and numerical solution accuracy has been achieved. As one
would expected, a faster convergence and greater numerical solution accuracy is obtained for
lower Reynolds numbers. In the case of laminar flow modelling it is observed that the

Figure 20. Nodal velocities (lfpc-290-20).
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Figure 21. Pressure contours (lfpc-290-20).

numerical method is stable and weakly dependent on velocity material time derivation
discretisation time step size.

The implemented numerical method was tested by modelling the driven cavity laminar flow.
The numerical results seem to compare favourably with the literature.
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Figure 22. Streamlines (lfpc-290-20).
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14. P. Cvitanović, Uni6ersality in Chaos, Adam Hilger, Bristol, 1984.
15. W.H. Steeb, A Handbook of Terms used in Chaos and Quantum Chaos, BI-Wiss, Mannheim, 1991.
16. D.M. Hawken, H.R. Tamaddon-Jahromi, P. Townsend and M.F. Webster, ‘A Taylor–Galerkin-based algorithm

for viscous incompressible flow’, Int. J. Numer. Methods Fluids, 10, 327–351 (1990).
17. M.M. Gupta and R.P. Manohar, ‘Boundary approximations and accuracy in viscous flow computations’, J.

Comput. Phys., 31, 265–288 (1979).
18. R. Schreiber and H.B. Keller, ‘Driven cavity flows by efficient numerical techniques’, J. Comput. Phys., 49,

310–333 (1983).
19. Hwar-Ching Ku and D. Hatziauramidis, ‘Solution of the two-dimensional Navier–Stokes equations by Chebyshev

expansion methods’, Comput. Fluids, 13, 99–113 (1985).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 601–626 (1999)


